Machine Learning: Pasos claves para su implementación en la exploración minera
Publicado hace 1 año
La exploración minera es un proceso complejo que requiere el análisis de grandes volúmenes de datos geológicos, geoquímicos y geofísicos para identificar posibles yacimientos minerales.
La implementación de Machine Learning (ML) ha demostrado ser una herramienta clave para optimizar este proceso, reduciendo costos y mejorando la precisión en la toma de decisiones. A continuación, se presentan los pasos fundamentales para integrar ML en la exploración minera:
Recolección y preprocesamiento de datos
El primer paso en la aplicación de ML es la recopilación de datos relevantes. Estos pueden incluir:
- Datos geofísicos: Imágenes de magnetometría, gravimetría y electromagnéticos.
- Datos geoquímicos: Composición de muestras de suelos, rocas y aguas subterráneas.
- Datos geológicos: Mapas de formaciones rocosas, fallas y estructuras tectónicas.
- Imágenes satelitales e hiperespectrales: Para evaluar alteraciones superficiales relacionadas con mineralización.
El preprocesamiento implica la limpieza de datos (detección y eliminación de valores atípicos, imputación de datos faltantes) y la normalización para evitar sesgos en los modelos.
Selección de características y reducción de dimensionalidad
Dado que los datos de exploración son altamente multidimensionales, es esencial aplicar técnicas de selección de características, como:
- Análisis de Componentes Principales (PCA): Para reducir la dimensionalidad sin perder información clave.
- Algoritmos de filtrado y envoltura: Como Recursive Feature Elimination (RFE) y mutual information.
Entrenamiento y validación de modelos de Machine Learning. Se utilizan diversos algoritmos de ML para predecir la probabilidad de presencia de minerales en un área determinada. Los modelos más empleados incluyen:
- Redes Neuronales Artificiales (ANNs): Para detectar patrones complejos en datos no lineales.
- Random Forest y Gradient Boosting (XGBoost, LightGBM): Para clasificación y predicción con interpretabilidad.
- Support Vector Machines (SVM): Para segmentación de regiones con mineralización probable.
- Modelos Geoestadísticos Híbridos: Combinando ML con Kriging para interpolaciones espaciales.
Se emplea validación cruzada (k-fold cross-validation) para evitar sobreajuste y evaluar la precisión del modelo.
Implementación y generación de mapas predictivos. Una vez calibrado el modelo, se implementa en plataformas SIG (Sistemas de Información Geográfica) para la generación de mapas de prospectividad mineral. Esto permite priorizar zonas de exploración con mayor probabilidad de contener recursos minerales.
Evaluación y retroalimentación del modelo. La fase final incluye la evaluación del modelo a partir de perforaciones exploratorias. Si los resultados difieren significativamente de las predicciones, se retroalimenta el sistema con nuevos datos para mejorar la precisión del modelo.
El uso de Machine Learning en la exploración minera representa una revolución en la industria, permitiendo una toma de decisiones más informada y eficiente. La combinación de datos multidisciplinarios con técnicas avanzadas de análisis está redefiniendo la manera en que se identifican y desarrollan nuevos yacimientos minerales.
Fuente: Tecnología Minera
TAMBIÉN TE PUEDE INTERESAR
Monitoreo en tiempo real para seguridad minera: tecnologías, analíti . . .
17/Feb/2026 9:55am
El monitoreo en tiempo real en minería mejora la seguridad operacional mediante sensores, analítica y plataformas digi . . .
IIoT: conectividad masiva para decisiones industriales en tiempo real . . .
16/Feb/2026 4:34pm
El IIoT impulsa la hiperconectividad industrial con datos en tiempo real, analítica avanzada y mantenimiento predictivo . . .
Planificación de expansión de operaciones mineras: evaluación técn . . .
16/Feb/2026 4:30pm
Conozca cómo planificar la expansión de operaciones mineras mediante evaluaciones técnicas, económicas y de riesgo p . . .
Simuladores operativos para entrenamiento técnico: eficiencia, seguri . . .
16/Feb/2026 4:27pm
Conoce cómo los simuladores operativos transforman el entrenamiento técnico en minería e industria, mejorando la segu . . .
Suscríbete al Boletín
Para recibir noticias diarias de Tecnología Minera




