Cómo optimiza la recuperación de minerales mediante el Machine Learning
Publicado hace 1 año
El Machine Learning ofrece herramientas poderosas para optimizar la recuperación de minerales en las operaciones mineras.
La industria minera se encuentra constantemente desafiada por la necesidad de maximizar la eficiencia en la recuperación de minerales. Sin embargo, los avances en tecnologías como el Machine Learning (ML) han generado una revolución en la forma en que estos desafíos son abordados. El ML, a través de algoritmos inteligentes y análisis de datos avanzados, proporciona una serie de ventajas para mejorar la recuperación de minerales en las operaciones mineras.
Una de estas ventajas radica en la capacidad del Machine Learning para predecir la calidad del mineral. Al analizar grandes volúmenes de datos históricos sobre la calidad del mineral y los parámetros del proceso de extracción, los modelos de ML pueden ofrecer predicciones precisas en tiempo real. Esto permite a las operaciones mineras ajustar sus procesos para optimizar la recuperación de minerales de alta calidad.
Además, el ML también puede contribuir a optimizar la fragmentación del mineral, un aspecto crítico en el proceso de extracción que influye directamente en la eficiencia de la recuperación. Mediante el análisis de datos de perforación, voladura y trituración, los algoritmos de ML pueden identificar patrones y tendencias que impactan en la fragmentación del mineral, posibilitando ajustes en tiempo real para maximizar la recuperación.
Otro aspecto donde el ML muestra su utilidad es en la optimización de procesos de flotación, un método común para separar minerales valiosos de ganga. Al analizar datos de procesos de flotación pasados, el ML puede identificar relaciones entre variables operativas y la eficiencia de la recuperación, permitiendo ajustes precisos en tiempo real para maximizar la recuperación de minerales valiosos y minimizar las pérdidas.
Asimismo, el Machine Learning puede ser aplicado para optimizar la gestión de residuos en operaciones mineras, identificando formas de reducir la cantidad de desechos generados y maximizar la recuperación de materiales valiosos de los desechos mediante el análisis de datos sobre su composición y los procesos de disposición.
Además de mejorar la recuperación de minerales, el ML también puede contribuir a la seguridad y sostenibilidad en las operaciones mineras. Al analizar datos de seguridad y medio ambiente, los modelos de ML pueden identificar patrones y riesgos potenciales, permitiendo la implementación proactiva de medidas preventivas y mitigadoras.
En conclusión, el Machine Learning ofrece herramientas poderosas para optimizar la recuperación de minerales en las operaciones mineras, desde la predicción de la calidad del mineral hasta la optimización de procesos y la mejora de la seguridad. Este avance tecnológico está transformando la industria minera al permitir decisiones más informadas y eficientes basadas en datos.
Fuente: Tecnología Minera
TAMBIÉN TE PUEDE INTERESAR
Minería 4.0: gestión de datos en tiempo real y Centros Integrados de . . .
23/Jan/2026 4:35pm
Cómo la gestión de datos en tiempo real impulsa la Minería 4.0 y fortalece los Centros Integrados de Operaciones para . . .
Cinco innovaciones que marcarán la minería en el periodo 2026–2030 . . .
23/Jan/2026 4:32pm
La industria minera atraviesa una transformación estructural impulsada por la digitalización, la automatización avanz . . .
Producción de oro: Yanacocha lideró la producción en Perú en 2025 . . .
23/Jan/2026 4:28pm
Perú produjo 9.100.584 gramos finos de oro en noviembre 2025 (-2,7%). El acumulado enero–noviembre subió 0,05% y Yan . . .
Chile: Mirasol inicia programa de perforación en el objetivo 46 Sur d . . .
23/Jan/2026 4:26pm
Los trabajos apuntan a un blanco epitermal de alta sulfuración identificado a partir de recientes estudios geofísicos . . .
Suscríbete al Boletín
Para recibir noticias diarias de Tecnología Minera




